Copolymerization of ethylene and propylene using catalysts based on titanium compounds modified with trimethylsilanol

Hyun Joon Kim

Samsung General Chemical Co. Ltd, Chemical Technology Center, Sam 2-6 Moonji-dong, Yusong-gu, Taejon 305-380, Korea

and Luiz Claudio de Santa Maria*

Instituto de Ciências, Escola Federal de Engenharia de Itajubá, Av. BPS 1303, Itajubá/MG 37500-000, Brazil (Received 8 October 1993)

Copolymerization of ethylene and propylene was performed using a catalyst based on TiCl₄ modified with trimethylsilanol which is soluble in toluene (diluent used in the polymerization) even after cocatalyst addition. The copolymers were analysed and their structures were found to be very similar to those obtained with vanadium catalysts.

(Keywords: ethylene-propylene copolymer; chemical inversion; random copolymer)

Introduction

The physical properties of ethylene-propylene (EP) random copolymers are strongly dependent upon the monomer sequence distribution as well as on the number of chemically inverted propylene units (chemical inversion)^{1,2}. In comparison to the common titanium catalysts, vanadium-based catalysts produce more random copolymers with much higher chemical inversion³⁻⁶. Thus, EP random copolymers are still produced mainly using vanadium catalyst, despite their low activity and stability.

The copolymers of ethylene with higher olefins are important commercial products, and industrial efforts have been directed towards finding novel and more efficient catalysts for the synthesis of desired copolymers. The copolymer composition and structure are assumed to depend on the catalyst characteristics, such as stereospecificity and homogeneity. We have recently found that TiCl₄ and CpTiCl₃ modified with trimethylsilanol (TML) combined with common trialkylaluminium are able to polymerize ethylene and propylene⁷. The catalyst was therefore employed in EP copolymerization in this work. Carrying out the olefin copolymerizations with these new homogeneous Ziegler-Natta catalysts based on TiCl₄ or CpTiCl₃ modified with TML, we have found that the copolymer structure is markedly dependent on the catalyst composition.

Experimental

Materials. Research grade ethylene, propylene and toluene (from Takachiho Chemical Co.) were further purified according to the usual procedures. Nitrogen of ultra-high purity (99.9989%, from Nippon Sarso Co.) was purified by passing through a 3 Å molecular sieve, P₂O₅ and CaCl₂ columns. TiCl₄ and CpTiCl₃ were purchased commercially and used without further purification.

*To whom correspondence should be addressed

© 1994 Butterworth-Heinemann Ltd

0032-3861/94/06/1336-03

EP copolymerization and analytical procedures. In a 100 cm³ autoclave equipped with a magnetic stirrer were placed 20 cm³ of toluene, 0.1 mmol of Ti in toluene solution and a given amount of Si(CH₃)₃OH under nitrogen at room temperature. The mixture was then agitated for a certain time and a given amount of alkylaluminium was added. The reactor was cooled with liquid nitrogen, degassed in vacuo, and determined amounts of the purified monomers were introduced. The polymerization was conducted at 40°C for a certain time. The polymerization was terminated by adding dilute hydrochloric acid solution in methanol. The precipitated polymer was washed with methanol, followed by drying in vacuo at 60°C for 6 h. The ¹³C n.m.r. spectrum of the copolymer was recorded at 120°C using a Jeol FX-100 spectrometer in the pulse Fourier transform mode. Sample solutions were made in 1,2,4-trichlorobenzene/d₆benzene (9/1 v/v) up to 20 wt%. The d.s.c. curve was obtained with a Shimadzu Thermal Analyzer DT-30 at a heating rate of 10°C min⁻¹. Molecular weight and molecular weight distribution of the polymer were determined by g.p.c. at 150°C by means of a Water Associates ALC/GPC using o-dichlorobenzene as solvent and a Shodex 80M column (AD-80M/S).

Results and discussion

As mentioned above, vanadium catalysts such as VCl₄ and VOCl₃, which produce highly random EP copolymers, are soluble in hydrocarbon solvents. On the other hand, titanium catalysts, such as TiCl₃ and TiCl₃. ¹/₃AlCl₃, are solid and insoluble in those solvents, and have a low activity for random copolymerization. Seemingly, if a Ti³⁺ compound is soluble in hydrocarbon and/or halogenated hydrocarbon solvents, it would have an activity for random EP copolymerization higher than that of vanadium catalysts. Thus, we studied preparative methods for soluble Ti3+ compounds and their catalyst activities for EP copolymerization.

The EP copolymerization was carried out using two catalyst systems: TiCl₄/TML and CpTiCl₃/TML combined with different kinds of cocatalyst. For comparison, copolymerization was also performed with unmodified catalysts (TiCl₄ or CpTiCl₃). The results are summarized in Table 1. The microstructures of copolymers are shown in Table 2. A large difference between the catalysts was observed in the $S_{\alpha\beta}$ peak, which is attributed to the chemical inversion of propylene units³⁻⁶. Figures 1a and b show the 13 C n.m.r. spectra of typical copolymers obtained with unmodified TiCl₄ and TiCl₄ modified with TML, respectively. The peak assignments were made according to the literature⁸. The product of monomer reactivity ratios $(r_{\rm E}r_{\rm P})$, shown in Table 2, indicates that the copolymers obtained with modified catalysts are statistically random copolymers whereas those obtained with the unmodified catalyst are poor in propylene units and have a somewhat blocky character.

The microstructures of copolymers, shown in Table 2, were analysed using 13C n.m.r. spectra. The dyad sequence distributions were estimated using the following relationships⁹:

$$\begin{aligned} & [PP] = I(S_{\alpha\alpha}) \\ & [EP] = I(S_{\alpha\gamma}) + I(S_{\alpha\delta}) \\ & [EE] = 1/2[I(S_{\beta\delta}) + I(S_{\delta\delta})] + 1/4I(S_{\gamma\delta}) \\ & [P] = [PP] + 1/2[EP] \\ & [E] = [EE] + 1/2[EP] \end{aligned}$$

where $I(S_{xy})$ is the peak intensity of carbon⁸.

By using the monomer sequence distributions in the copolymers, the product of the reactivity ratios $(r_{\rm E}r_{\rm P})$ and

Table 1 Results of ethylene-propylene copolymerization^a

Run no.	Catalyst system	Type of cocatalyst	Propylene in feed (mol%)	Yield (g)	$T_{m}^{\ b}$ (°C)	$10^{-3} \times \bar{M}_n^c$	$10^{-4} \times \overline{M}_{\mathrm{w}}^{}c}$	${ar M}_{ m w}/{ar M}_{ m n}{}^{ m c}$
1	TiCl ₄	Al(i-Bu) ₃	50	0.89	120		_	_
2	TiCl ₄	Al(i-Bu)3	80	0.45	117	_	_	_
3	TiCl ₄	MAO	50	0.45	119	-	_	
4	TiCl ₄	MAO	80	0.20	115	_	_	_
5	TiCl ₄ /TML ^d	Al(i-Bu) ₃	50	0.86	119	_	_	_
6	TiCl ₄ /TML ^d	Al(i-Bu)3	80	0.38	118		_	-
7	TiCl ₄ /TML ^d	AlClEt ₂	50	0.80	120	_	_	_
8	TiCl ₄ /TML ^d	MAO	50	0.90	112	16.8	25.0	14.9
9	$TiCl_4/TML^d$	MAO	80	0.43	-f	8.7	7.3	8.4
10	CpTiCl ₃	Al(i-Bu) ₃	50	0.04	118		_	-
11	CpTiCl ₃	Al(i-Bu) ₃	80	0.03	116	_	_	_
12	CpTiCl ₃ /TML ^e	Al(i-Bu) ₃	50	0.73	118	_	_	_
13	CpTiCl ₃ /TML ^e	Al(i-Bu) ₃	80	0.10	116	_	_	_

^a Copolymerization of ethylene and propylene was conducted at 40°C in a stainless steel reactor for 15 min with 0.1 mmol of Ti and Al/Ti=10 in toluene (20 ml)

Table 2 Microstructure of copolymers^a

Run no.	Catalyst system	Type of cocatalyst	Propylene in feed (mol%)	Dyad sequence distribution ^b			Monomer content ^b		,		
				[EE]	[EP]	[PP]	[E]	[P]	$r_{\rm E}r_{\rm P}$	ρ	$[S_{\alpha\beta}]/[S_{\beta\beta}]$
1	TiCl ₄	MAO	80	0.78	0.21	0.01	0.88	0.12	0.79	0.98	0.78
2	TiCl ₄	Al(i-Bu)3	80	0.59	0.37	0.04	0.78	0.22	0.60	0.93	0.35
3	TiCl ₄ /TML ^c	MAO	50	0.70	0.29	0.01	0.84	0.16	0.39	0.91	0.85
4	TiCl ₄ /TML ^c	MAO	80	0.45	0.43	0.12	0.67	0.33	1.14	1.03	0.57
5	TiCl ₄ /TML ^c	Al(i-Bu)3	80	0.63	0.34	0.03	0.80	0.20	0.64	0.94	0.30
6	CpTiCl ₃ /TML ^d	Al(i-Bu) ₃	50	0.88	0.11	0.01	0.94	0.06	0.95	0.94	_

^aCopolymerization conditions were the same as in Table 1

 $T_{\rm m}$, melting temperature obtained by d.s.c.

^{&#}x27;Average molecular weights $(\bar{M}_n \text{ and } \bar{M}_w)$ and molecular weight distribution (\bar{M}_w/\bar{M}_n) obtained by g.p.c.

 $^{^{}d}$ TiCl₄/TML = 2

 $^{^{}e}$ CpTiCl₃/TML = 10

^f No melting temperature was observed

TML, trimethylsilanol; MAO, methylaluminoxane

^b Estimated from ¹³C n.m.r. spectra of copolymers

 $^{^{}c}$ TiCl₄/TML = 2

 $^{^{}d}$ CpTiCl₃/TML = 10

TML, trimethylsilanol; MAO, methylaluminoxane

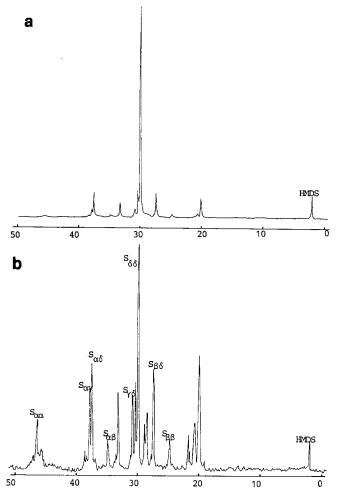


Figure 1 13C n.m.r. spectra of ethylene-propylene copolymers: (a) obtained by unmodified catalyst (TiCl₄) using methylaluminoxane as cocatalyst at Al/Ti=10 (run no. 4 in Table 1); (b) obtained by TiCl₄ modified with TML using methylaluminoxane as cocatalyst at Al/Ti=10 (run no. 9 in Table 1). Chemical shift assignments (in ppm) from hexamethyldisilane (HMDS)

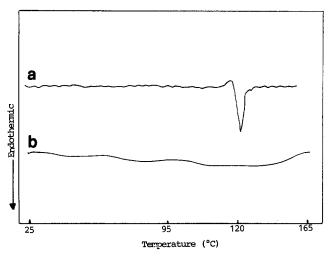


Figure 2 D.s.c. curves of ethylene-propylene copolymers: (a) obtained with unmodified catalyst (TiCl₄) using methylaluminoxane as cocatalyst at Al/Ti=10 (run no. 4 in Table 1); (b) obtained with TiCl₄ modified catalyst using methylaluminoxane as cocatalyst at Al/Ti = 10 (run no. 9 in Table 1)

the persistence ratios $(\rho)^{10}$ were estimated according to the following equations:

$$r_{\rm E}r_{\rm P} = \frac{4[{\rm EE}][{\rm PP}]}{[{\rm EP}]^2}$$
$$\rho = \frac{2[{\rm P}][{\rm E}]}{[{\rm EP}]}$$

where [EE], [EP], [PP], [E] and [P] denote dyad sequence distributions and monomer contents in the copolymers. The persistence ratio is defined as the ratio of the actual mean length of closed ethylene (or propylene) sequence to the mean length of the Bernoullian process with the same ethylene (or propylene) content. Although some of the copolymers contained appreciable amounts of chemical inversion, for convenience $r_{\rm E}r_{\rm P}$ and ρ were estimated without considering it.

The sequence distribution can be considered to be more blocky than that anticipated by Bernoullian statistics when $r_{\rm E} r_{\rm P}$ or ρ are larger than unity. On the other hand, when they are less than unity the sequence distribution can be considered to be more alternating.

The d.s.c. curves of typical copolymers obtained with unmodified catalysts display a clear peak at approximately 120°C, corresponding to the melting temperature of a long sequence of ethylene units. Some copolymers obtained with modified catalysts did not present any melting peak, indicating a random distribution of ethylene and propylene units in the polymer chain. Some d.s.c. curves are shown in Figure 2.

In conclusion, it was found that the soluble TiCl₄ and CpTiCl₃ modified with Si(CH₃)₃OH (TML) are able to produce EP copolymers with structures very similar to those produced with vanadium catalysts. A more detailed study is now being carried out and the precise results will be reported in another paper.

Acknowledgements

Conselho Nacional de Pesquisa e Tecnologia (CNPq, Brazil) is thanked for its financial support to one of the authors. It is also a pleasure to acknowledge the stimulating discussions with Professor Kazuo Soga and co-workers.

References

- Natta, G., Mazzanti, A., Valvassori, A., Sartori, G. and
- Barbagalo, A. J. Polym. Sci. 1961, 51, 429 Caldwell, E. D. Encyclopedia of Polymer Science and Technology' (Ed. H. F. Mark), Vol. 6, Interscience Publishers, New York, 1976, p. 347
- 3 Zambelli, A., Lety, A., Tosi, C. and Pasquon, I. Makromol. Chem. 1968, 115, 73
- Natta, G., Valvassori, A., Mazzanti, G. and Satori, S. Chem. Ind. 1958, 40, 717
- 5 Junghanns, E., Gumboldt, A. and Bier, G. Makromol. Chem. 1962, 58, 18
- Cozewith, C. and Ver Strate, G. Macromolecules 1971, 4, 482 6
- Santa Maria, L. C. and Kim, H. J. Eur. Polym. J. in press
- Cheng, H. N. Macromolecules 1984, 17, 1950
- Randall, J. C. and Hsieh, E. T. 'NMR Macromolecules Sequence' (Ed. J. C. Randall), American Chemical Society, Washington, DC, 1984, p. 131 Pyun, C. W. J. Polym. Sci. A-2 1970, 8, 1111
- 10